Weed control using goats A guide to using goats for weed control in pastures # Weed control using goats A guide to using goats for weed control in pastures # Contact: Meat & Livestock Australia Ph: 1800 023 100 Published by Meat & Livestock Australia Limited ABN: 39 081 678 364 Reprinted with amendments May 2007 © Meat & Livestock Australia, 1993 ISBN: 1 7403 6248 9 This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. The inclusion of trade or company names in this publication does not imply endorsement of any product or company by MLA or any contributor to this publication. MLA and the contributors to this publication are not liable to you or any third party for any losses, costs or expenses resulting from any use or misuse of the information contained in this publication. # Contents | Introduction | 1 | |-------------------------------------------|----| | How goats control weeds | 1 | | What type of goat? | 1 | | The goat's role | 2 | | Pasture management | 2 | | Preparation | 3 | | Weed palatability determines stock ratio | 4 | | Weed palatability | 5 | | Highly palatable weeds | 5 | | Moderately palatable weeds - growth stage | 6 | | Moderately palatable weeds – availability | 8 | | Husbandry | 9 | | Miscellaneous | 10 | | Conclusion | 10 | | Appendix | 11 | | Glossary | 15 | | Peak industry council | 16 | | Breed societies | 16 | | Further reading | 16 | # Introduction Weeds in pasture greatly reduce the short- and long-term profitability of the pasture. The traditional methods of weed control in pastures are cultural, biological, chemical, mechanical or grazing. Not all control methods are necessarily effective or desirable. Successful pasture management requires an understanding of the grazing component. Using goats to control weeds can assist traditional control methods in providing efficient, sustainable pasture management when conducted according to best practice. Further detailed best practice information for existing goat producers and those considering entering the goat industry can be found in *Going into goats:*Profitable producers' best practice guide. The Going into goats guide is a comprehensive publication written by producers for producers and is available from MLA. # **How goats control weeds** Goats help control weeds by: - preferentially grazing the weed and so placing it at a disadvantage - preventing the weed from flowering and dispersing seed - ringbarking or structurally weakening some shrub species # **Preferential grazing** Preferential grazing is an ecological control method based on an animal's tendency to graze one plant species in preference to another. Goats tend to preferentially graze many weeds rather than desirable pasture species required for sheep and cattle production, especially clovers. The weed is thus placed at a competitive disadvantage. Fertiliser application will further assist this process by encouraging pasture growth. All grazing animal species have different dietary preferences. For example, the pasture composition will vary between a paddock grazed only by sheep and an adjacent paddock grazed only by cattle. Goats tend to preferentially graze many plants considered unpalatable to sheep and cattle and thus classified as weeds. This presents the opportunity for goats to be incorporated in grazing systems as a strategic weed control tool. Goats may also be used in conjunction with conventional weed control methods. They are efficient browsers and grazers of weeds that may have been missed during spraying and effectively control residual weeds in rocky outcrops, corners, around trees and along fence lines. Goats will also eat any weeds that germinated too early or too late to be affected by herbicides. Similarly, degraded non-arable country with woody and other weeds may be reclaimed by goat grazing. Blackberry controlled by grazing goats. # What type of goat? The Australian goat industry consists of meat, fibre and dairy sectors, all of which can be employed for weed control at various stages of the production cycle. Specialist meat-producing goats, Boer goats, rangeland goats and their crosses are most commonly used for weed control. Fibre-producing Cashmere and Angora goats are also well suited to weed control, although care should be taken to avoid fibre entanglement and contamination. These are generally only used off-shears and when the risk of cold stress is at a minimum. Dairy goats also play a role in weed control at some stages in the production cycle, but this is less common due to the intensive nature of the dairy industry. Feral low grade cashmere or meat-type goats (above) are recommended for weed control. 'Rangeland' refers to goats raised on land where the indigenous vegetation is predominantly grasses, herbs and shrubs suitable for grazing and browsing, and where the land is managed as a natural ecosystem. This includes natural grasslands, shrublands, deserts and alpine areas. # The goat's role The principal role of the goat is to place the weed at a competitive disadvantage to the surrounding pasture by: - selectively grazing - reducing the plant's stored energy reserves - trampling and ringbarking # The advantages - savings in the cost of chemicals, labour, time and machinery - sustained and efficient levels of control - returns from goat products - environmental (reduced chemical use) Furthermore, the producer maintains control at all stages by being able to decrease or increase grazing pressure depending on prevailing seasonal conditions. Other control methods do not give the producer the same level of control. # **Pasture management** In most cases it is also important to have a competitive base pasture to out-compete the weed and colonise bare areas. Clover is a good choice, as it is not highly selected by goats, and should be a major component of the pasture (more than 30%). It is advisable to apply fertiliser at the start of the weed control program to give the clover a competitive advantage. The application rate will depend on the paddock's fertiliser history and level of soil phosphorus. # Assessing pasture and weeds Before you can devise a stocking strategy you need to assess pasture quality and quantity and the degree of weed infestation. The degree of weed infestation is best judged in the weed's late vegetative stage, before flowering. This can be done by estimating the percentage groundcover of the weed in a 0.5m x 0.5m square as shown in Figure 1. Repeat the assessment in about 30 random positions across a paddock to gain an overall impression of weed infestation. For larger woody weeds, such as blackberry, broom and gorse, estimate the proportion of paddock taken up by the weed. From these assessments and knowledge of weed palatability (Appendix), a stocking strategy can be devised. Figure 1 An example of estimating the percentage of weed cover in a pasture: here, the thistle takes up about 30% of the groundcover. # **Grazing management** Monitor the grazing impact of goats on weeds and pasture during the period when the weed is most palatable to the goats (Appendix). Ensure there is sufficient pasture to satisfy the nutrition requirements of the animals and to compete effectively with the targeted weeds. Goats tend to eat the immature seed head of most thistles. The presence of mature seed heads after the first month of flowering indicates that goat stocking rates are too low to achieve control and should be increased. Similarly, all flowering points on other weeds need to be eaten by the goats to achieve weed control and prevent fruit and seed production. Stocking rates should be adjusted to achieve this while being careful not to overgraze the pasture and deplete groundcover. Depending on the comparative density of weeds and pasture, you may need to add pasture seed and fertiliser and adjust the ratio of goats to sheep or cattle. Alternatively, if all the seed heads are being eaten, but the pasture is overgrazed, the number of goats may be reduced. If all the seed heads are being eaten but the pasture is not sufficiently grazed, increase the number of sheep or cattle. Nodding thistle in clover. The thistle will be palatable to goats once it flowers. # **Preparation** Any necessary improvements must be made before goats arrive on a property. These improvements include water points, fences and yards. Goats test the lower portion of fences; any drains, low areas and diagonal stays will need to be covered with netting or fabricated wire to prevent goats escaping. Electric fencing is a reliable and inexpensive method of upgrading existing fences. As a general rule, any fence that will contain crossbred ewes will contain goats. For localised woody weed infestations it may be best to isolate the infestation with fencing. This has two benefits: it confines your goats to the infested area, so that fewer goats may be required for the job of controlling the weed; and it preserves the remaining pasture for your sheep or cattle. Fence in dense infestations. By confining the goats it ensures increased grazing pressure on the weed. For information on aspects of fencing for goats see Going into goats: Profitable producers' best practice guide. # Control of widespread weed infestation Where the weed infestation is so great that it would require too many goats to control, other methods may be employed to bring the weeds to a manageable level before you introduce the goats. This combining of weed control practices is called 'integrated control' and may include slashing, cultivation, spraying, pasture establishment or renovation and cropping. These methods may be used weeks, months or years before introducing goats, depending on the situation. # Woody weeds In dense infestations of woody weeds such as blackberry, scotch broom or gorse, slash paths through the infestation to allow greater access for the goats. Slash tracks through thick infestations (in this case, scotch broom) to allow goat access. # Control or eradicate? Control is achieved by stopping the annual replenishment of seed reserves in the soil and eradication is achieved after the exhaustion or effective suppression of these seed reserves. Therefore, the eradication of a weed is dependent upon several years of continuous control. As very few of the seeds ingested by goats remain viable, efficient control of weeds can be achieved through goats grazing seed heads of weeds. Eradication is, however, seldom achieved due to the variable success of control measures year on year. # 'Spray-graze' for broadleaf weed control The spray-graze technique has three phases: - 1. Broadleaf spraying - 2. Sheep grazing - 3. Goat grazing Spray-grazing can be used for control of heavy broadleaf weed infestations and is particularly effective for thistles. The chemical should be applied at the vegetative rosette stage (early winter, with clover at the 4-leaf stage) or early stem elongation. Chemical application and stock introduction should be in accordance with the manufacturer's recommendations to ensure weed kill and avoid potential chemical contamination. An initial heavy graze with sheep will account for the bulk of the vegetative weed material. Goats will then account for residual high fibre material, residual seed heads, more inaccessible weeds and those that were missed during spraying. Electric fencing may be used to increase stocking density in a particular area of paddock. Nitrate poisoning may occur with stock grazing variegated thistle, nodding thistle and Paterson's curse, and care should be taken if these have been sprayed. To achieve effective spray grazing: - 1. Spray a sub-lethal rate* of herbicide (MCPA or 2,4-D Amine). - 2. Withhold stock according to labelling directions then graze the wilted leaf heavily with sheep for one week. Livestock will preferentially graze the affected plant material due to the concentration of sugars post-spraying. A high stocking rate is 8–10 times the usual carrying capacity. - Reduce stock numbers as the weeds are eaten. - 4. Add goats at flowering to ensure that any surviving weeds do not flower and set seed. *Chemicals should be used in accordance with labelling directions at all times, especially animal grazing and withholding directions # Weed palatability determines stock ratio # 'Set' or 'strategic' stocking? Knowing how palatability varies at each stage of plant growth helps determine whether set or flexible stocking rates are required. Set stocking with goats for weed control is only advisable when quarantining recently acquired animals in the first year of a weed control program. Quarantining is considered a good management strategy in case the animals are affected by lice, footrot or other health problems. Set stocking may also reduce the cost of upgrading fences by limiting the initial development to one paddock. Having been quarantined, goats should be combined with other livestock to ensure peak production from available herbage and to maximise the competitive pressure applied to weeds. Holding paddocks will also be required to graze goats during non-peak weed control periods. # **Examples** Backberry is highly palatable to goats, meaning they will preferentially graze it year-round. This is particularly the case for spring to autumn when blackberry forms a large part of their diet. Consequently, goats can be introduced to blackberry from spring to autumn without reducing sheep or cattle numbers. In winter, the goats will continue to eat the blackberry foliage and any light canes, but as the foliage diminishes the goats will start to compete with sheep or cattle for the available grasses and, to a lesser extent, the clovers. The common thistle is an example of a weed that is not eaten year-round. In a pasture infested with young thistles, goats compete with sheep and cattle for the pasture, avoiding the young thistles. During flowering, however, the thistles are palatable to goats but not sheep and cattle, meaning competition for forage is considerably less. "Remember to assess seed head removal and pasture availability, and adjust your stock numbers accordingly." # **Weed palatability** The Appendix lists the weeds that are eaten by goats and categorises each according to its palatability. For goats, weeds can be grouped into those plants that are: - 1. Highly palatable weeds eaten at all stages of growth. - 2. **Moderately palatable weeds** eaten depending on certain criteria: - Growth stage weeds palatable at certain stages of growth, for example at flowering or in vegetative stage. - Availability weeds only eaten at particular times of the year or when more palatable plants are not available. - 3. Weeds of low palatability are not eaten at all. Knowing which category a weed belongs to allows you to determine how many sheep, cattle and goats are required to achieve control and whether an integrated strategy is required. # **Highly palatable weeds** ### **Definition** Weeds that are palatable at all stages of growth and therefore preferentially grazed most of the year. # **Examples** Scotch broom, sweet briar, blackberry, wild turnip. # Stocking strategy For scattered clumps of dense weed cover, add 10 goats for every 500 square metres (0.05 ha) of the cover. Do not reduce the stocking rate of sheep or cattle as the goats graze on these weeds year-round (that is, at all stages of the weeds' growth) so they will not significantly compete for pasture. For large areas of weed cover (more than 1.5 ha of dense weed) it is best to combine heavy goat grazing with integrated control methods. A goat enjoyed this briar. # Integrated control for high infestations of scotch broom, sweet briar and blackberry - 1. Fence off heavy infestations. - 2. Add goats 30 goats/ha in early spring to defoliate, browse, ringbark. Ensure sufficient goat numbers to remove all new growth. - 3. Destock over winter. - 4. After two years of goat grazing, spray with glyphosate (Grazon® or Garlon® or Brushoff®) in February; consider destocking until burning two months later. Repeat in the following year, then mechanically knock down old stems, reseed and fertilise. - 5. Maintain low goat stocking rate or replace with sheep to control seedlings. - 6. Add other livestock. Dense growth of scotch broom is greatly reduced within two years if goat grazing at a level that completely defoliates the weed. Control can be achieved within another two years, provided all seedlings are eaten. This is all that remains of scotch broom after goats graze it. Goats graze broom (rear) at all stages of its growth. Scotch broom before grazing. Scotch broom after grazing. # **Blackberry** # For eradication over several years - 1. Slash access tracks. - 2. In early spring add goats (up to 30/ha). - 3. In late summer burn canes and do limited spot spraying of inaccessible crowns then reseed and fertilise the burnt area. # **Protecting mature trees** Goats will ringbark some mature trees, particularly over the late winter/spring period. Soft-barked gums are most at risk and may require protection from goats. Not all trees will be targeted by the goats. Even within the same species, individual trees will have a different attractiveness to goats. Wire chicken mesh wrapped twice around the trunk to a height of 2m will prevent damage. Exposed roots may also need covering. # For rapid eradication (within one year) - 1. Slash access tracks. - 2. In early spring add goats (up to 50/ha). - 3. In late summer burn canes and spray all crowns (use Garlon® 480, 1:40 distillate) then reseed and fertilise the burnt area. # Moderately palatable weeds - growth stage ### **Definition** Weeds palatable at certain stages of growth, for example at flowering or in vegetative stage. # **Examples** Illyrian, scotch, variegated, saffron and spear (black) thistle as well as nodding thistle (not in rosette stage). # Stocking strategy For light infestations of weeds in this class, set or strategically stock with goats* after germination in autumn so that the external leaves are grazed, thus reducing the plant's width and height. Goats can then be removed over winter while maintaining sheep numbers to reduce pasture volume to just less than 1,000kg dry matter/ha. Restock with goats immediately prior to flowering at a rate of one goat/ha for every 3% thistle cover. If grazing small goats (under 30kg), increase stocking rates by 10%. Note that goats unfamiliar with scotch thistle have a reduced impact at the first flowering. **For high infestations** of weeds in this class, integrated control is more effective than goat grazing alone. # Integrated control of high infestations of illyrian and scotch thistle in annual pasture - Apply MCPA/Lontrel[®] mix about mid September and outside of any risk of a frost[†]. - 2. At early flowering assess thistle cover and allocate minimum one goat/ha for every 3% thistle cover. - 3. At the same time graze with sheep until pasture dry matter is reduced to less than 1,000kg/ha. - 4. Monitor purple seed heads as an indication of whether there are enough goats to control seeding. - 5. In late summer graze at a rate that maintains groundcover. - 6. Repeat each year until no chemical required; retain low level of goats*. # Integrated control of high infestations of illyrian and scotch thistle in perennial pasture - 1. Apply MCPA/Lontrel[®] mix about mid September and outside of any risk of a frost[†]. - 2. At early flowering assess thistle cover and allocate minimum one goat/ha for every 3% thistle cover. - 3. At the same time graze with sheep until pasture dry matter is reduced to less than 1,000kg/ha. - 4. Monitor purple seed heads as an indication of whether there are enough goats to control seeding. - 5. In late summer graze at a rate that maintains groundcover. - 6. Repeat each year until no chemical required; retain low level of goats*. - 7. Fertilise to encourage phalaris and clover growth. - 8. In late summer, graze at a rate that maintains groundcover. # Integrated control of high infestations of variegated thistle in perennial pasture Spray-graze in late autumn/early winter, or at stem elongation, with sheep followed by goats. Be aware of nitrate poisoning. # Integrated control of high infestations of nodding thistle in annual pasture Spray-graze for two seasons Or - 1. Renovate pasture, sowing clover and phalaris. - 2. Stock with goats over flowering. - 3. Fertilise annually. - 4. In autumn, graze at a rate that maintains groundcover. # Integrated control of high infestations of nodding thistle in perennial pasture 1. Spray-graze at early stem elongation with sheep. Goats eat nodding thistle at this stage of its growth. - 2. Then stock with goats over flowering. - 3. Fertilise annually. - 4. In autumn, graze at a rate that maintains groundcover. No nodding thistle: goats grazed the left paddock. Flowering illyrian thistle is not palatable to sheep.But goats make a meal of it Variegated thistle control: goats were grazed in the right paddock. ^{*} The number of goats needed is directly related to the number of seed heads to be eaten. The best time for assessment is at early flowering after the effects of chemical or pasture competition are apparent. [†] Chemicals should be used in accordance with labelling directions at all times especially animal grazing and withholding directions. # Moderately palatable weeds - availability # **Definition** Weeds only eaten at particular times of the year or when more palatable plants are not available. # **Examples** Poa tussock, Juncus species, slender thistle and hawthorn are moderately palatable weeds. # Stocking strategy Use either set stocking or strategic stocking, depending on when the plant is eaten by goats (see Appendix). Control takes several years but early grazing of the tussocks by goats allows the surrounding pasture to compete and provides additional sheep and cattle forage. These weeds are typically of low nutritional quality and goats may require protein supplements to fully utilise the weed and to maintain animal production. Remember to assess seed head removal and pasture availability, and adjust stock numbers accordingly. Grazing of poa tussock prevents shading of surrounding pasture, allowing it to spread. # Integrated control for high infestations of poatussock Burn in late summer and spot spray. After the autumn break, seed and fertilise and stock with goats at 15/ha. Spot spray fencelines. Goat control of poa tussock, left of the fenceline. # St John's wort This weed contains hypericin, which causes nervous disorders and photosensitisation in grazing animals. Mature goats are less susceptible to the effects of hypericin than other grazing animals. Many grazing management strategies have been tried in an effort to control the weed. The best strategy used so far in the most difficult situation, large paddocks in hill country, has been the combination of non-fibre producing goats and Santa Gertrudis cattle. A severe infestation of St John's wort at Wyangala. # Case study - St John's wort Grazing began on Richard Arnott's Birnham Wood, Coolah, in 1979. The paddock was heavily infested hill country that had been aerially top-dressed with subterranean clover and fertiliser. Initially the stocking rate used was 8.2 DSE*/ha, comprising 4 DSE/ha goats and 4.2 DSE/ha cattle. After two years the rate of goats was progressively reduced and that of cattle increased. The rate in 1994 was 2.2 DSE/ha goats and 6 DSE/ha cattle. By 1986 the goats had controlled the blackberries, briars and thistles. By 1994 the groundcover of St John's wort had been reduced from 90% dense wort at the start to 20% dense wort, 50% scattered and 30% nil. The stocking rate had been increased from 2.5 DSE/ha before1979 to 8.2 DSE/ha in 1994. Despite exposure to wort, animals with white skin introduced over the last 10 years have suffered surprisingly little photosensitisation. It is possible that continual exposure to low levels of hypericin has resulted in animals developing resistance to the effects. * A dry sheep equivalent or DSE is the amount of feed required to maintain a two-year-old, 45kg Merino sheep. # **Husbandry** The behaviour and agility of goats, especially rangeland and Cashmere goats, is such that producers should carefully consider their infrastructure requirements before introducing goats to their property. This is explained in detail in *Going into goats: Profitable producers' best practice guide*; items to be considered include suitable fencing and goat handling facilities. # Suitable fencing All fence lines should be clear of obstacles that may help goats jump the fence, such as stumps, stays and banks. In most cases, however, goats prefer to go under or through fences rather than over. Goats can become caught in fences by their horns, and prefabricated fencing known as 'pig netting', such as 8/80/15, should be avoided. Examples of fences that are satisfactory are 8/90/30, 6/90/30 and 8/115/30. If goats find a way out of a paddock, steps should be taken quickly to repair the fence before escape habits are reinforced. Electric fencing can be used to effectively control goats. # Suitable goat handling facilities Goat yards generally include external yard fences of 1.2m high and internal yard fences of 1.0m high. The working race should be 1.2m high and 0.7m wide. Sheep races are generally too long for goats and need to be shortened with dividing gates every 2.0-3.0m. This will discourage goats from smothering; however, avoid panels where a goat attempting to jump the gate may tangle its foot in the top of the mesh. The drafting race should be about 1.8m long and 0.25m wide. Some modifications may be needed to accommodate bucks with large horns. Existing cattle and sheep yards may be modified to accommodate goats. On wool-producing properties, care must be taken to avoid fibre contamination when sharing sheep and goat handling facilities, especially shearing sheds and yards. # **Behaviour** The behaviour of goats is somewhere between sheep and cattle. Consequently, little practical adjustment is required for graziers moving into goats. Flock mobility and behaviour are largely affected by the leader at the time. In mixed-sex flocks this is usually a buck, while wethers tend to lead in the absence of bucks. Escapes are usually initiated by the leader and it may be worthwhile to remove rogue animals from the herd. When goats escape through or under the fence they usually return in the first week to their 'home' paddock; however, such behaviour must be discouraged. Does tend to plant their kids for the four days following kidding. The distance the doe will travel from the planted kid or kids is largely determined by feed availability. Does tend to graze closer to the kids when feed is abundant. Goats behave differently to cattle and sheep when confined in yards, and working methods must be adjusted accordingly. Their alert and observant disposition means they are easily moved in yards and through gateways, but they balk very easily and do not flow as evenly as sheep when being counted through a gateway. Goats tend to rush more or not go at all. When being forced in confined areas, such as in the approach to a drafting race or while drenching in the working race, goats will go down very readily. Although surprisingly little damage results from this packing down, it is best kept to a minimum. Dogs are rarely necessary once goats have been yarded and movement in larger yards with big mobs is best done as quietly as possible. When working in forcing areas or races, trampling can be minimised by having only 12 or 15 animals at a time in the area. # Health Goats are susceptible to many of the diseases and parasites that commonly affect sheep, with the notable exception of flystrike. Where Johne's disease has been identified in goats, it appears to be related to the cattle strain, although this has not been confirmed. Lice on goats are specific to goats and will not affect sheep, but goats can act as a vector to carry sheep lice from one sheep to another. The purchase and introduction of goats onto a property should be conducted with the same level of care and consideration for the security of the land asset that accompanies all livestock purchases. Goats should be accompanied by a National Vendor Declaration and animal health statements and tagged as required according to the NLIS requirements. # **Miscellaneous** ### **Predators** Disappointing kid survival levels have been associated with the presence of eagles, foxes and wild pigs. Where predators are thought to be a problem, the basic tactic is to kid at the same time as lambing or when most producers in the district are lambing or kidding. Food for predators is consequently more plentiful and diverse. Baiting with 1080 for foxes and pigs can be effective in some areas and may be required. ### Chill Goats generally dislike wet conditions. Animals at high risk of chill stress include fibre goats with short fibre length in winter and newborn kids. Shelter may be required for such animals. # Adoption The question of which goat will best suit you, your operation and environment requires consideration. As a means of familiarising farmers with goat behaviour and management, the following sequence is suggested. - Acquire a copy of Going into goats: Profitable producers' best practice guide to determine the appropriateness of going into goats in your situation. - 2a. For meat production: Buy a breeding nucleus of about 100 conformationally sound rangeland, cashmere or improved Boer does: Year 1 – no joining - Year 2 join to quality meat buck, retain best female kids, sell remainder - Year 3 continue to upgrade does - 2b. For mohair, cashmere and dairy production: Contact the relevant breed society for further information specific to the breed of interest. See 'Breed societies'. # Conclusion The integration of goats on a farm can have ecological and economic advantages provided sound management practices are adopted. This introduction should be supplemented by more detailed information available through the *Going into goats: Profitable producers' best practice guide*, breed societies and state departments of primary industries. The best advice you are likely to receive regarding goat production is, however, likely to come from goat producers in your local area. Less productive land may be reclaimed by goat grazing. # **Appendix** The palatability of weeds (not necessarily endemic to Australia) to goats when weeds are grown in Australia. | Botanical name | Common name | * | Botanical name | Common name | * | |------------------------|---------------------|----|-----------------------------------------|-----------------------|-----| | Acacia aneura | mulga | Н | Asclepias curassavica | redhead cotton bush | N | | Acacia escelsa | ironwood | М | Asphodelus fistulosus | onion weed | N | | Acacia farnesiana | mimosa bush | М | Atalaya hemiglauca | whitewood | Н | | Acacia glaucescens | coastal myall | Т | Atriplex spp | saltbush | M | | Acacia karoo | karoo thorn | L | Atropa belladonna | deadly nightshade | Т | | Acacia mearnsii | black wattle | ΗF | Avena spp | wild oats | Н | | Acacia nilotica | prickly acacia | М | Baccharis halimifolia | groundsel bush | Н | | Acacia homalophylla | yarran | М | Bambusa spp | bamboo | HR | | Acacia paradoxa | kangaroo thorn | М | Bidens pilosa | cobblers peg | Н | | Acaena ovina | sheeps burr | М | Brachychiton populneum | kurrajong | Н | | Acetosa sagittata | turkey rhubarb | Н | Brassica tournefortii | wild turnip | Н | | Aconitum napellus | monkshood | Т | Bromus diandrus | great brome | HR | | Acroptilon repens | hard head thistle | М | Brugmansia candida | angels trumpet | Т | | Aesculus | horse chestnut | М | Bursaria spinosa | jimmy burn | Н | | Agapanthus spp | agapanthus | L | Buxus spp | box hedge | М | | Agave spp | century plant | L | Caesalpina spp | bird of paradise | N | | Ageratina adenophora | crofton weed | М | Calicotome spinosa | spiny broom | М | | Ageratum houstonianum | blue billygoat weed | М | Callitris columellaris | cyprus pine | Н | | Ageratum riparia | mistflower | М | Callitris endlicheri | black cyprus pine | Н | | Ailanthus altissima | tree of heaven | L | Calotropis procera | rubber bush | N | | Alhagi pseudalhagi | camel thorn | М | Cannabis sativa | indian hemp | Н | | Allium triquetrum | three corner garlic | L | Capparis mitchellii | white orange | Н | | Allium vineale | wild garlic | L | Capsella bursa-pastoris | shepherds purse | М | | Alternanthera pungens | khaki weed | L | Cardiospermum spp | balloon vine | N | | Amaranthus spp | amaranth | М | Carduus nutans | nodding thistle | MF | | Ambrosia artemisifolia | annual ragweed | М | Carduus pycnocephalus | slender thistle | MF | | Ambrosia confertiflora | burr ragweed | М | Carex spp | sedge | MF | | Ambrosia psilostachya | perennial ragweed | М | Carthamus lanatus | saffron thistle | MF | | Ambrosia tenuifolia | lacy ragweed | М | Carthamus leucocaulos | glaucous star thistle | MF | | Ammi majus | bishops weed | М | Cassia artemisioides | silver cassia | 1 | | Amsinckia spp | amsinckia | N | Cassia eremophila | punty bush | N | | Andropogon virginicus | whisky grass | MR | Cassia floribunda | smooth cassia | M | | Angophora spp | angophora | МН | Cassinia arcuata | sifton bush | L | | Anredera cordifolia | madeira vine | L | Casuarina cristata | belah | Н | | Apophyllum anomalum | warrior bush | Н | Cenchrus echinatus | Mossman river grass | MR | | Araujia hortorum | mothplant | M | Cenchrus spp | spiny burrgrass | MR | | Arctotheca calendula | capeweed | Н | Centaurea melitensis | cockspur | L | | Argemone mexicana | Mexican poppy | N | Centaurea nigra | black knapweed | M | | Aristida spp | wire grass | M | Centaurea riigra Centaurea solstitialis | st Barnaby thistle | M F | | Asclepias spp | cotton bush | N | Cestrum parqui | green cestrum | T | | ποσορίας σρρ | COLLOTT DUSTI | 14 | Oestium paiqui | green cesuum | | ^{*} palatability where T = toxic; N = nil (not eaten); L = low palatability; M = moderate palatability; H = high palatability and F = eaten at flowering; R = recent growth, regrowth; Pd = physical damage | Botanical name | Common name | * | Botanical name | Common name | * | |-----------------------------------------------|---------------------|-----|---------------------------|-------------------------|----| | Chamaecytisus proliferus | lucerne tree | Н | Echium vulgare | vipers bugloss | ΗF | | Chenopodium spp | fat hen | Н | Emex australis | spiny emex | М | | Chloris spp | windmill grass | MR | Eragrostis australasica | cane grass | М | | Chondrilla juncea | skeleton weed | MR | Eragrostis curvula | african love grass | HR | | Chrysanthemoides monilifera | bitou bush | Н | Eremophila longifolia | emu bush | Н | | Cichorium intybus | chicory | М | Eremophila mitchellii | budda | L | | Cineraria lyrata | cineraria | M | Eremophila sturtii | turpentine bush | N | | Cinnamomum camphora | camphor laurel | Н | Erodium spp | crowfoot | ΜF | | Cirsium arvense | californian thistle | MF | Erythrina spp | coral tree | Н | | Cirsium vulgare | black thistle | MF | Erythroxylum coca | coca leaf | М | | Citrullus colocynthis | bitter apple | M | Eucalyptus albens | white box | ΜF | | Citrullus lanatus | bitter melon | L | Eucalyptus cladocalyx | sugar gum | Т | | Codonocarpus spp | horse radish tree | L | Eucalyptus melliodora | yellow box | MR | | Conium maculatum | hemlock | М | Eucalyptus polyanthemos | red box | ΜF | | Consolida ambigua | larkspur | Т | Eucalyptus populnea | bimble box | L | | Convallaria majalis | lily of the valley | Т | Euphorbia spp | spurge | N | | Convolvulus arvensis | bindweed | Н | Foeniculum vulgare | fennel | М | | Conyza albida | tall fleabane | Н | Froelichia floridana | cotton tails | М | | Coreopsis lanceolata | coreopsis | М | Galenia pubescens | galenia | М | | Cortaderia spp | pampas grass | HR | Gastrolobium grandiflorum | desert poison bush | T | | Cotoneaster spp | cotoneaster | М | Gaura parviflora | clockweed | M | | Cotula australis | carrot weed | М | Geijera parviflora | wilga | L | | Craspedia spp | bellybuttons | ΜF | Gelsemium sempervirens | yellow jasmine | T | | Crataegus spp | hawthorn | М | Genista linifolia | flax-leaved broom | H | | Cryptostegia grandiflora | rubber vine | L | Genista monspessulana | canary broom | н | | Cucumis myriocarpus | paddy melon | М | Gleditisia triacanthos | honey locust tree | Н | | Cuscuta spp | dodder | Н | Gloriosa superba | glory lily | т | | Cycas spp | zamia palm | L | Gnaphalium spp | cudweed | i | | Cvnara cardunculus | artichoke thistle | H F | Gomphocarpus spp | narrow leaf cotton bush | N | | Cynodon dactylon | couch | М | Gorteria personata | gorteria | Н | | Cyperus aromaticus | navua sedge | M F | Haloragis aspera | raspwort | Н | | Cyperus rotundus | nut grass | LF | Heliotropium amplexicaule | blue heliotrope | т | | Cytisus scoparius | broom | H | Heliotropium europaeum | heliotrope | Ĺ | | Danthonia spp | wallaby grass | Н | Helleborus niger | Christmas rose | T | | Daphne odora | daphne | T | Heterodendrum oleifolium | rosewood | H | | Datura stramonium | thornapples | N | Hibiscus trionum | bladder ketmia | М | | Delphinium spp | delphinium | N | Hirschfeldia incana | buchan weed | MR | | Dieffenbachia spp | dumbcane | T | | | | | Diplotaxis tenuifolia | sand rocket | MF | Homeria spp | cape tulips | L | | Diplotaxis teriuliolia Dittrichia graveolens | stinkwort | MR | Hordeum leporinum | barley grass | М | | Dittricnia graveoiens Dodonaea attenuata | | МК | Hydrangea spp | hydrangea | L | | Dodonaea attenuata Dodonaea viscosa | narrowleaf hop bush | M F | Hyparrhenia hirta | coolatai grass | H | | | broad leaf hop bush | | Hypericum androsaemum | tutsan | L | | Duboisia hopwoodii | pitjuri | N | Hypericum perforatum | st johns wort | LT | | Duranta repens | golden dewdrop | T | Hypericum tetrapterum | st peters wort | M | | Ecballium elaterium | squirting Cucumber | N | Hypericum triquetrifolium | tangled hypericum | M | | Echium plantagineum | patersons curse | MF | Hypochaeris radicata | cat's ear | F | | Botanical name | Common name | * | Botanical name | Common name | * | |----------------------------|----------------------|--------|--------------------------|-------------------------|------| | Ibicella lutea | devils claw yellow | N | Owenia acidula | gruie | Н | | llex spp | holly | L | Oxalis spp | oxalis | L | | Imperata cylindrica | blady grass | HR | Papaver somniferum | opium poppy | L | | Ipomoea spp | wier vine | М | Parthenium hysterophorus | parthenium weed | М | | Iva axillaris | poverty weed | М | Peganum harmala | african rue | N | | Jatropha curcas | physic nut | Т | Pennisetum macrourum | african feather grass | MR | | Juncus acutus | spiny rush | F | Pentzia suffruticosa | calomba daisy | L | | Juncus spp | rushes | MF | Persicaria spp | smart weed | М | | Laburnum spp | laburnum | L | Phalaris spp | phalaris grass | Н | | Lactuca serriola | prickly lettuce | Н | Phragmites australis | canegrass | ΜF | | Lantana camara spp | lantana | Н | Phyla canescens | lippia | L | | Lathyrus odoratus | sweet pea | Т | Physalis virginiana | perennial ground cherry | L | | Laurel spp | bay tree | М | Physalis viscosa | prairie ground cherry | MF | | Lavandula stoechas | lavender | М | Phytolacca octandra | inkweed | M | | Lepidium spp | peppercress | M F | Pimelea curviflora | pimelea | N | | Leucanthemum vulgare | ox-eyed daisy | М | Pinus radiata | radiata pine | Н | | Ligustrum lucidum | broad-leaf privet | Н | Poa labillardieri | poa tussock | M | | Ligustrum sinense | small-leaf privet | Н | Polygonum aviculare | wire weed | M | | Linaria dalmatica | dalmation toadflax | Т | | | | | | | H | Portulaca oleracea | purslane | L | | Lolium spp | ryegrass | | Proboscidea louisianica | devils claw purple | L | | Lomandra longifolia | mat rush | L
H | Prosopis spp | mesquite | Н | | Lonicera japonica | honeysuckle | | Prunus spp | wild peach | Н | | Lycium ferocissimum | african boxthorn | M | Pteridium esculentum | bracken | L Pd | | Macfadyena unguis-cati | cats claw creeper | N | Pyracantha spp | indian hawthorn | Н | | Macrozamia spp | burrawang | N | Raphanus raphanistrum | wild radish | M t | | Maireana spp | blue bush | M | Rapistrum rugosum | turnip weed | Н | | Malva parviflora | marshmallow | L | Rhododendron spp | rhododendron | L | | Malvella leprosa | ivy-leaf sida | М | Ricinus communis | castor oil plant | M | | Marrubium vulgare | horehound | HF | Robinia pseudoacacia | black locust | M | | Melia azedarach | white cedar | М | Romulea rosea | guildford grass | M | | Melianthus comosus | tufted honeyflower | N | Rosa canina | dog rose | Н | | Melilotus albus | bokhara clover | М | Rosa rubiginosa | sweet briar | Н | | Muehlenbeckia Cunninghamii | lignum | Н | Rubus fruiticosus | blackberry | Н | | Myagrum perfoliatum | mitre cress | Н | Rumex spp | dock | М | | Nassella neesiana | Chilean needle grass | М | Salsola kali | soft roly poly | М | | Nassella trichotoma | serrated tussock | MR | Salvia reflexa | mintweed | М | | Nerium oleander | oleander | Т | Schinus spp | pepper tree | Н | | Nicandra physalodes | apple of peru | MF | Sclerolaena birchii | galvanised burr | М | | Nicotiana glauca | tree tobacco | М | Sclerolaena muricata | fivespined saltbush | MR | | Olea europaea | olive | М | Scolymus hispanicus | golden thistle | ΜF | | Olearia elliptica | australian daisy | М | Senecio jacobaea | ragwort | L | | Onopordum acanthium | scotch thistle | М | Senecio madagascariensis | firewood | ΗF | | Onopordum acaulon | stemless thistle | ΜF | Senecio pterophorus | african daisy | L | | Onopordum illyricum | illyrian thistle | ΜF | Senecio quadridentatus | cotton fireweed | Н | | Opuntia inermis | prickly pear | L | Senecio vulgaris | common groundsel | Н | | | • • | | | | | | Botanical name | Common name | * | Botanical name | Common name | * | |------------------------|------------------------|----|---------------------------|------------------------|----| | Senna barclayana | pepper leaved senna | М | Stipa spp | spear grass | MR | | Sida acuta | spiny-head sida | MR | Swainsona spp | darling pea | Т | | Sida cordifolia | flannel weed | М | Tagetes minuta | stinking roger | М | | Sida rhombifolia | paddy's lucerne | Н | Taxus baccata | english yew | Т | | Silene vulgaris | bladder campion | N | Thevetia peruviana | yellow oleander | Т | | Silybum marianum | variegated thistle | Н | Thunbergia grandiflora | blue trumpet vine | M | | Sisymbrium officinale | hedge mustard | ΗF | Toxicodendron radicans | poison ivy | L | | Solanum carolinense | caroline horse nettle | L | Toxicodendron succedaneum | rhus tree | M | | Solanum cinereum | Narrawa burr | N | Trema aspera | peach leaf poison bush | Т | | Solanum elaeagnifolium | silverleaf nightshade | М | Tribulus terrestris | cat head | M | | Solanum hermannii | apple of Sodom | N | Trifolium spp | clovers | MF | | Solanum laciniatum | kangaroo apple | N | Typha spp | cumbungi | M | | Solanum marginatum | white edge nightshade | N | Ulex europaeus | gorse | Н | | Solanum mauritianum | wild tobacco tree | М | Urochloa panicoides | liverseed grass | Н | | Solanum nigrum | blackberry nightshade | N | Urtica incisa | scrub nettle | L | | Solanum rostratum | buffalo burr | N | Urtica spp | stinging nettle | L | | Soliva pterosperma | jo-jo | L | Ventilago viminalis | supplejack | Н | | Sonchus spp | sowthistle | Н | Verbascum thapsus | aarons rod | ΗF | | Sorghum spp | Johnson grass | Н | Verbena spp | purple top | ΗF | | Sporobolus caroli | fairy grass | ΜF | Verbena tenuisecta | maynes pest | Н | | Sporobolus indicus | giant parramatta grass | MR | Watsonia bulbillifera | watsonia | MR | | Sporobolus pyramidalis | giant rats tail | MR | Xanthium occidentale | noogoora burr | Т | | Stachys arvensis | stagger weed | М | Xanthium orientale | californian burr | Т | | Stevia eupatoria | stevia | L | Xanthium spinosum | bathurst burr | L | | Stipa caudata | espartillo | MR | Zantedeschia aethiopica | arum lily | N | | | | | | | | Source: Holst and Simmonds 2000 ^{*} palatability where T = toxic; N = nil (not eaten); L = low palatability; M = moderate palatability; H = high palatability and F = eaten at flowering; R = recent growth, regrowth; Pd = physical damage # Glossary # **Cropping phase** May entail sowing a short-term (annual) fodder crop, or entering a complete (3-5 year) cropping 'phase'. ### Integrated control Use of alternative methods to lower the overall weed burden – both in mass of plants and seed reserves in the soil. Following with goats will ensure the required 100% control of seeding. Control over a long period uses methods such as cropping or pasture establishment and usually precedes the addition of goats. Control in the short-term uses methods such as spray-grazing. ### Pasture renovation Addition of superphosphate and direct drilling of pasture seed. # Rangeland goat Goats raised on land where the indigenous vegetation is predominantly grasses, herbs and shrubs suitable for grazing and browsing, and where the land is managed as a natural ecosystem. This includes natural grasslands, shrublands, deserts and alpine areas. # Rosette Small vegetative thistle. ### Set stocking Animals remain in one paddock all year round. Stock number is determined by the feed availability over the most limiting stage (usually winter). ### Spray-graze Spraying broadleaf weeds with a non-lethal dose of herbicide, followed by heavy stocking with sheep. # Stem elongation Rapid vertical growth of the thistle as it prepares to flower. ### Stocking strategy Management decision regarding grazing technique – continuous grazing or at particular (specific) periods. # Strategic stocking Animals are rotationally grazed through several paddocks. Goats are added to a paddock at a time when their impact is greatest on the target weed and therefore competition with other livestock for feed is reduced. ### Weed control Complete annual prevention of seeding. # Weed eradication Exhaustion or effective suppression of soil-based seed reserves of the weed. # **Peak industry council** The Goat industry Council of Australia (GICA) www.gica.com.au # **Breed societies** Australian Cashmere Growers Association Ltd (ACGA) Ph/Fax: 02 9629 2390 Email: cashmere@acga.asn.au Boer Goat Breeders' Association of Australia Ltd c/- ABRI University of New England Armidale, NSW 2351 Ph: 02 6773 5177 www.australianboergoat.com.au Dairy Goat Society of Australia Ltd PO Box 9048 Traralgon, VIC 3844 Ph: 03 5176 0388 Email: dgsasec@bigpond.com.au Mohair Australia 147 East Street (PO Box 22) Narrandera, NSW 2700 Ph: 02 6959 2069 www.mohair.org.au # **Further reading** Meat & Livestock Australia (2006), Going into goats: Profitable producers' best practice guide (Meat & Livestock Australia). Holst, P. J., and Simmonds, H.E. (2000), *Palatability of weeds to goats in Australia*, Proceedings 7th, International Conference on Goats, France, pp 111–113. Simmonds, H., Holst, P. and Bourke, C. (2000), *The Palatability and Potential Toxicity of Australian Weeds to Goats*, (Rural Industries Research and Development Corporation, ACT). Cover images courtesy of Peter Schuster