Managing crown land boundaries Future challenges for Invasive Species Control

The purpose of the session is to highlight the issues at private/public interface which impact now and how they are bring dealt with. Also explore projected changes in the future and options for management.

Before lunch

- Pathogens for blackberry biocontrol. Louise Morin, CSIRO
- Blackberry biological control; invertebrate options and a role for citizen science. Greg Lefoe and Raelene Kwong DEDJTR
- Lessons from the Community Wild Dog Control Program, Barry Davies DELWP
- Morning tea
- Projected increases in Deer populations.
 Greg Baxter University of Qld.

After lunch

- HVP Plantations Boundary Management Program, Andrew Bussau
- DELWP Good Neighbour Program, Stefan Kaiser, DELWP
- Regional and Local Parks Victoria Pest Plant and Animal Control, John Silins, Ranger I Kiewa Murray Area I Upper Murray and Elaine Thomas, Regional Project Coordinator (Alps Intensive Management Program)
- **Group Discussions:** What's working? What can we do better? Opportunities to get better outcomes.

Foundations for the day

- Listen
- Respect others point of view
- Contribute your ideas in group sessioneveryone involved
- Focus on issue not person
- Be solutions focussed
- Explore what is possible and think outside the square

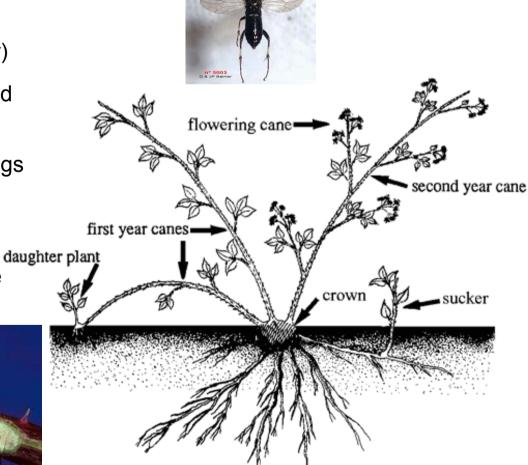
Blackberry Biocontrol:

Invertebrate options – Raelene Kwong Role for citizen science – Greg Lefoe

Background

History of biocontrol of blackberry in Australia

- First surveys conducted in 1977 across continental Europe, mostly central and southern Europe
- 38 arthropods (insects and mites) and 15 pathogens identified that were restricted to *Rubus* spp.
- Three potential agents short-listed:
 - leaf-rust fungus *Phragmidium violaceum*
 - purple blotch fungus Septocyta ruborum
 - stem-boring sawfly Hartigia albomaculata



Background

Stem-boring sawfly *Hartigia albomaculata*

- Univoltine (one generation per year)
- Parthenogenetic (offspring produced without mating)
- Adults emerge in spring and lay eggs into succulent primocanes
- Larvae tunnel into the pith
- Dieback of primocanes reduces the formation of daughter plants

Background

Stem-boring sawfly *Hartigia albomaculata*

- Preliminary host specificity tests conducted in 1970s on 35 plant species
- Larval development occurred on some cultivated blackberry and rose varieties
- But raspberry and four Australian native *Rubus* spp were not attacked, and
- Hartigia albomaculata as never been found to attack plants other than R. fruticosus in the field
- Results from preliminary host tests may have been influenced by laboratory procedure

New Zealand – insects imported but not released (1925-1932)

Organism	Name	Plant association	
Buprestid beetles	Agrilus ruficollis (USA) - could not establish a colony for host testing Coraebus rubi (England) — specific to R. fruticosus but adults fed on a range of plants	Crown borers	UGA1496494
Gall midge	Dasineura plicatrix Lasioptera rubi Attacked raspberry	Leaf and stem galls	
Moths	Thyatira batis Attacked raspberry and loganberry Pennisetia marginata (USA) – could not be reared	Leaf feeders	

Literature – potential invertebrates

Organism	Name	Plant association	
Eriophyid mite	Eriophyes rubicolens	Leaf erineum	
Sawflies Lg. 5.5 mm 1.5.5 mm 2.4.3 D. 5.5 mm 2.4.3	Claremontia alternipes Empria excisa Macrophya militaris M. montana montana Monophadnoides ruficrucis	Leaf-feeders	
Moth	Ectoedemia erythrogenella	Leaf miner	123

Promising candidates

Root borers Coraebus rubi

Stem borers Hartigia albomaculata

Gall formers *Dasineura plicatrix* (leaf galls) *Lasioptera rubi* (stem galls)

Conclusions

- 1. Invertebrates for the biological control of blackberry warrants further investigation
- 2. Previous laboratory host testing (1930's & 1970s) may have dismissed "good candidates"
- 3. Host specificity testing procedures have greatly improved and new tools (molecular) are available

